SUBSURFACE SOIL INVESTIGATION

9001 RAYO AVENUE SOUTH GATE, CA 90280

DECEMBER 12, 2005

Prepared For: PIAZZA TRUCKING INC. 9001 Rayo Avenue South Gate, CA 90280

Phase I Site Assessments • Subsurface Investigations Underground Tank Removal/Closure • Site Remediation

1386 East Walnut Street, Suite 203 Pasadena, California 91106 (626) 440-1736

FAX: (626) 440-1524

1386 East Walnut Street, Suite 203 Pasadena, California 91106

> Phone (626) 440-1736 FAX (626) 440-1524 email: athanor@pacbell.net

December 12, 2005

Mr. Michael J. Piazza Vice President Piazza Trucking Inc. 9001 Rayo Avenue South Gate, CA 90280

Re: Report on Subsurface Soil Investigation of 9001 Rayo Avenue, South Gate, CA 90280

Dear Mr. Piazza:

Per our contractual agreement, Athanor Environmental Services, Inc. is pleased to submit this report on our subsurface soil investigation of the real property site at 9001 Rayo Avenue, South Gate, California 90280.

The laboratory report is included in appendices to the report.

If you have any questions, please don't hesitate to contact me.

Sincerely,

George A. Johnson

President

SUBSURFACE SOIL INVESTIGATION

9001 RAYO AVENUE SOUTH GATE, CA 90280

DECEMBER 12, 2005

Prepared For: PIAZZA TRUCKING INC. 9001 Rayo Avenue South Gate, CA 90280

PREPARED BY:
ATHANOR ENVIRONMENTAL SERVICES, INC.
1386 East Walnut Street
Suite 203
Pasadena, CA 91106

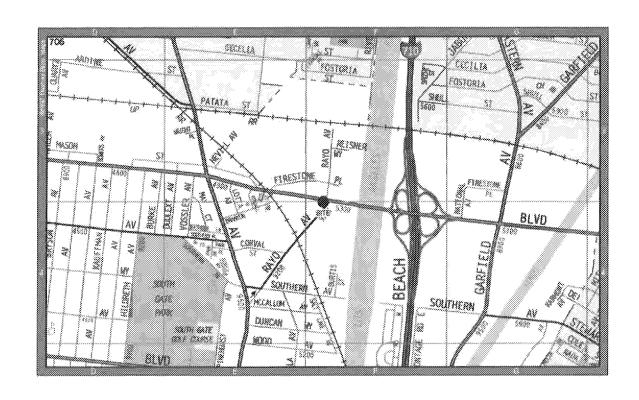
CONTENTS

Secti	<u>on</u>		<u>Page</u>
1.0	INTI	RODUCTION	1
2.0	BAC	CKGROUND	3
	2.1	Phase I Site Assessment	3
	2.2	Soil Vapor Survey	3
	2.3	Subsurface Soil Investigation	6
3.0	SOII	L SAMPLING PROGRAM	8
4.0	LAB	BORATORY RESULTS	10
5.0	CON	NCLUSIONS	11
6.0	REC	COMMENDATIONS	12
Figuı	re 1 - Lo	ocal Vicinity Map	2
Figui	re 2 - Sc	oil and Soil Vapor Sampling Location Map	4
Figuı	re 3 - Sc	oil Sampling Location Map	9

APPENDIX A - LABORATORY REPORT

1.0 INTRODUCTION

This report presents the results of an environmental site investigation, consisting of a subsurface soil investigation, performed by Athanor Environmental Services, Inc. (Athanor) of Pasadena, California of the real property located at 5040 Firestone Boulevard and 9001 Rayo Avenue, Los Angeles, California 90063. Figure 1 locates the property on a map of the local vicinity. The property site is currently occupied by Piazza Trucking Inc (Piazza Trucking). This project was performed for and under the direction of Mr. William Piazza and Mr. Michael Piazza of Piazza Trucking.


The purpose of this effort was to: (1) conduct soil sampling and laboratory analysis; (2) identify any regulated contaminants; (3) arrive at appropriate conclusions; and (4) provide any necessary recommendations.

The investigation portion of the project was not intended to be a public health evaluation of any kind, nor was it a certification that the entire site is either free from, or significantly affected by, environmental contamination. Rather, this investigation should be considered a support to any decisionmaking process involving the property.

Athanor has sought to convey the results of this effort to Mr. Piazza in a way that is practical, useful, and in accordance with accepted scientific and/or engineering practice and protocols. Following this Introduction, Section 2.0 describes site background. Section 3.0 describes the program of soil sampling. Section 4.0 presents the laboratory analytical results. Section 5.0 presents conclusions. Section 6.0 provides recommendations. The laboratory report is included in an appendix to this report.

Athanor assumes no liability from any of the individuals interviewed or other parties involved or from losses sustained as a result of decisions based on interpretations of this report.

In October, 2005, Mr. Michael Piazza contracted with Athanor to perform a soil vapor survey and subsurface soil investigation of the subject site in South Gate, California. At the request of Citibank, In November, Mr. Piazza contracted with Athanor to perform a second subsurface soil investigation of the subject site.

Location of Subject Parcel

FIGURE 1. LOCAL VICINITY MAP

2.0 BACKGROUND

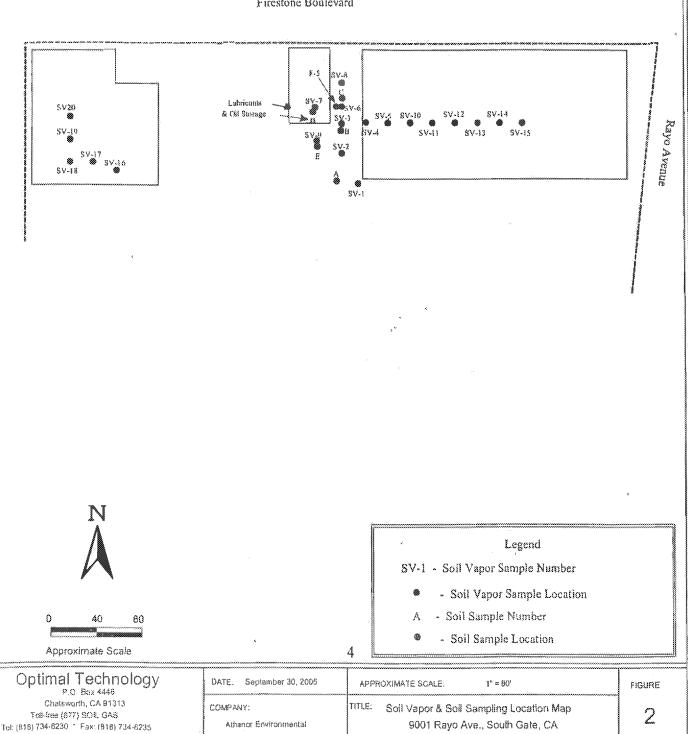
2.1 Phase I Site Assessment

Orswell & Kasman, Inc of Monrovia, CA submitted phase I site assessments on the subject properties. The reports noted past uses of oils and solvents and oil-stained areas. Athanor recommended that a geophysical survey and a soil vapor survey be conducted.

2.2 Soil Vapor Survey

On September 30, 2005, Athanor conducted a soil vapor survey of the subject property. The purpose of this study was to examine the property for any potential environmental impairment liability from the possible presence of aromatic and/or chlorinated hydrocarbon volatile organic compounds (VOCs) in the subsurface soil.

The soil vapor survey explored areas of concern, as shown in Figure 2 - Soil Vapor and Soil Sampling Location Map.


The soil vapor survey resulted in a grid, laid out at approximately 20-foot intervals, with a total of 20 soil vapor sampling locations established, as shown in Figure 2.

The 20 soil vapor samples were collected with subsurface probes at depths of 5.0 feet below grade surface (bgs). Samples were analyzed by an onsite state-certified mobile analytical laboratory, employing a gas chromatograph (GC), by a method similar to EPA Method 8260B for VOCs.

Soil vapor sampling probes were installed using a truck-mounted percussion hammer and a hand-held percussion hammer.

Soil vapor samples were analyzed in a state-certified mobile analytical laboratory equipped with a laboratory grade Hewlett Packard Model 5890 Series II Gas Chromatograph (GC) configured with a Photo-Ionization Detector (PID) and an Electron Capture Detector (ECD). This system was used to analyze soil vapor samples for total VOCs using a method similar to EPA Method 8021B.

Firestone Boulevard

Concentrations of trichloroethene (TCE) and perchloroethene (PCE) were detected, as follows, in micrograms per liter (ug/L):

	Concer	itration
Probe	TCE	PCE
SV-1	N.D.*	12.4
SV-2	N.D.	18.0
SV-3	N.D.	24.1
SV-4	1.4	24.6
SV-5	1.5	25.3
SV-6	1.3	27.8
SV-7	N.D.	21.6
SV-8	1.0	25.1
SV-9	N.D.	13.7
SV-10	1.0	25.8
SV-11	N.D.	22.2
SV-12	N.D.	11.6
SV-13	N.D.	7.9
SV-14	N.D.	3.9
SV-15	N.D.	2.6
SV-16	1.6	5.8
SV-17	3.6	6.4
SV-18	8.8	6.8
SV-19	5.3	4.5
SV-20	3.6	2.7

^{*} Nothing detected – beneath detection limits.

No other concentration of any VOC was detected in any of the samples.

2.3 Subsurface Soil Investigation

On September 30, 2005, Athanor conducted a subsurface soil investigation of the subject property. The purpose of the study was to identify any significant concentrations of petroleum hydrocarbons or VOCs in the subsurface soil.

A total of six borings, Borings A-F, were located in the oil stained and drum storage areas between the 9001 Rayo Avenue main building and the building to the west, as shown in Figure 2. Boring A was located next to Soil Vapor Probe SV-6, where the highest concentration of PCE was detected, 27.8 ug/L.

Soil samples were collected with a truck-mounted Geoprobe direct-push sampling device (Geoprobe) at depths of one, three, and five feet below grade surface (bgs) from Borings A-E. A soil sample was collected at a depth of five feet bgs (the same depth as Soil Vapor Probe SV-6) from Boring F.

Soil samples collected at depths of one foot bgs from Borings A-E and at a depth of five feet bgs from Boring F were analyzed by EPA Method 418.1 for total recoverable petroleum hydrocarbons (TRPH). The soil sample collected at a depth of five feet bgs from Boring F was also analyzed by EPA Method 8260B for aromatic and chlorinated VOCs. Soil samples collected at depths of three and five feet bgs from Borings A-E were held by the laboratory, pending the results from the samples analyzed. Most samples were analyzed by an onsite mobile laboratory. The remaining samples were analyzed by a stationary laboratory.

Concentrations of TRPH detected were as follows, in parts per million (ppm):

	Depth	
<u>Sample</u>	(in feet)	Concentration
A-1	1	66
B-1	1	8.5
C-1	1	230
D-1	1	24
E-1	1	N.D.
F-5	5	N.D.

No concentrations of any VOC were detected in Soil Sample F-5.

Elevated concentrations of TCE, up to 8.8 ug/L, and PCE, up to 27.8 ug/L, were detected in soil vapor samples collected. TCE and PCE are both commonly used solvents/degreasers. Micrograms per liter (ug/L) in soil vapor is roughly equivalent to parts per billion (ppb). Soil vapor VOC concentrations are generally higher than soil concentrations, sometimes much higher, because VOCs tend to volatilize and remain in soil vapor, which is the void space between the particulates.

A soil vapor survey is used to screen a large area laterally for the presence of regulated contaminants. It is meant to be used in conjunction with a subsequent subsurface soil investigation — soil sampling and laboratory analysis. There are no State of California standards for soil vapor. Published cleanup thresholds are for soil.

No concentration of any VOC was detected in Soil Sample F-5, collected next to and at the same depth as Soil Vapor Probe SV-6, where the highest concentration of PCE was detected in the soil vapor. No TCE concentration was detected in Soil Sample F-5. Consequently, it is concluded that no concentration of either TCE or PCE has been identified in the soil.

According to the Los Angeles County Department of Public Works (LACDPW), Hydrologic Records Section, the nearest groundwater monitoring wells to the subject property, is Well #1525D, located at the intersection of McCallum Avenue and Salt Lake Avenue, approximately 1800 feet south of the subject site.

According to the California Regional Water Quality Control Board, Los Angeles Region (RWQCB), May, 1996 Interim Site Assessment & Cleanup Guidebook (Cleanup Guidebook), the cleanup levels for total petroleum hydrocarbons (TPH) at the subject site would be 500 ppm for TPH in the C_4 - C_{12} carbon chain range (which covers gasoline), 1,000 ppm for TPH in the C_{13} - C_{22} carbon chain range (which covers mid distillate, such as diesel or hydraulic fluid), and 10,000 ppm for TPH in the C_{23} - C_{32} carbon chain range (which covers waste oil and other heavy oils), assuming that groundwater beneath the subject property is at a depth of 20-150 feet bgs.

Since the highest TRPH concentration detected was 230 ppm in Soil Sample C-1, all TRPH concentrations are beneath cleanup levels.

3.0 SOIL SAMPLING PROGRAM

On November 21, 2005, Athanor conducted a subsurface investigation of the subject property. The purpose of the study was to examine the property for any potential environmental impairment liability from the possible presence of chlorinated VOCs in the soil at the locations of the former soil vapor probes that encountered the highest concentrations of PCE (after SV-6, where former Boring F was located).

A total of four borings were located, G-J, as shown in Figure 3 - Soil Sampling Diagram, as follows:

- O Boring G located next to SV-5 (25.3 ug/L of PCE).
- O Boring H located next to SV-4 (24.6 ug/L of PCE).
- Boring I located next to SV-10 (25.8 ug/L of PCE).
- Boring J located next to SV-8 (25.1 ug/L of PCE).

After first penetrating asphalt or concrete, each boring was advanced into the subsurface soil with a truck-mounted Geoprobe direct-push sampling device (Geoprobe), with soil samples collected at depths of five and 10 feet below grade surface (bgs) from each boring.

Each soil sample was collected in an acetate liner inside a freshly decontaminated stainless steel sampling tube driven into undisturbed soil by the Geoprobe. Upon retrieval, the sample tube was sealed with teflon sheeting and plastic end caps, labeled, and stored on ice in a thermally-insulated cooler, chilled to approximately 4° Centigrade.

The borings were backfilled with Bentonite. The borings were then sealed to grade with cold patch asphalt or concrete. The site was cleared of debris.

Soil samples and chain-of-custody documents were transported to a state-certified analytical laboratory for analysis.

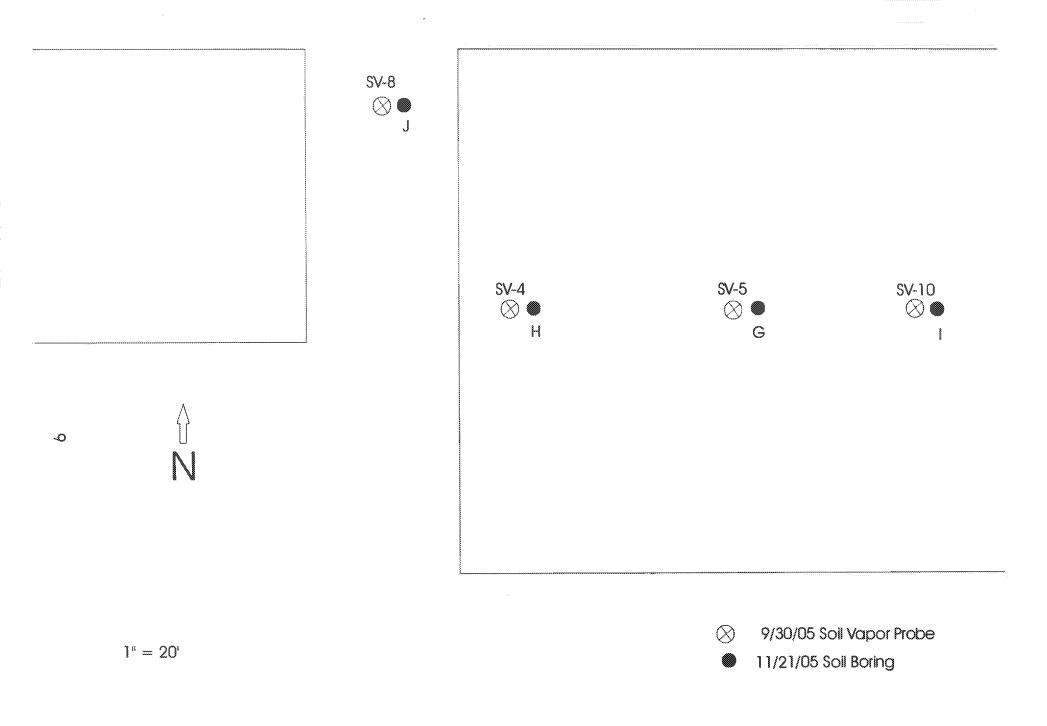


FIGURE 3. SOIL SAMPLING LOCATION MAP

4.0 LABORATORY RESULTS

All samples collected were analyzed by EPA Method 8260B for full screen aromatic and chlorinated volatile organic compounds (VOCs).

No concentration of any VOC, including PCE and TCE, was detected in any of the soil samples analyzed.

Quality assurance and quality control (QA/QC) measures were implemented for soil sampling, handling, and laboratory analysis in order to produce data of known quality. The laboratory performing the analysis completed internal QA/QC procedures, including method blanks, surrogates, matrix spike and matrix spike duplicates, laboratory duplicates, and initial and continuing calibration checks.

The laboratory report is included in Appendix A.

5.0 CONCLUSIONS

No concentration of any VOC, including PCE and TCE, was detected in any of the soil samples analyzed.

APPENDIX A LABORATORY REPORT

9765 Eton Avenue Chatsworth California 91311 Tei: (818) 998-5547

Fax: (818) 998-7258

December 06, 2005
George Johnson
Athanor Environmental Services
1386 East Walnut St., Suite 203
Pasadena, CA 91106

Re: Piazza / 30-09A

A200452 / 5K22015

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received on 11/21/05 17:23 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Assurance Program Manual, applicable standard operating procedures, and other related documentation. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report or require additional information please call me at American Analytics.

Sincerely,

Viorel Vasile

Operations Manager

Client: Project No: **Athanor Environmental Services**

30-09A

Project Name: Piazza

Sample Matrix: Soil

AA Project No: A200452 Date Received: 11/21/05 Date Reported: 12/06/05

Units: ug/kg

Method: Purgea	ble Volatile Organic Cor	mpounds by GC/I	ИS		
Date Sampled:	11/21/05	11/21/05	11/21/05	11/21/05	***************************************
Date Prepared:	12/05/05	12/05/05	12/05/05	12/05/05	
Date Analyzed:	12/05/05	12/05/05	12/05/05	12/05/05	
AA ID No:	5K22015-01	5K22015-02	5K22015-03	5K22015-04	
Client ID No:	G-5	G-10	H-5	H-10	
Dilution Factor:	1	1	1	1	MRL
8260B Full List (EPA 82	(60B)				
Acetone	<50	<50	<50	<50	50
Benzene	<2.0	<2.0	<2.0	<2.0	2.0
Bromobenzene	<5.0	<5.0	<5.0	<5.0	5.0
Bromochloromethane	<5.0	<5.0	<5.0	<5.0	5.0
Bromodichloromethane	<5.0	<5.0	<5.0	<5.0	5.0
Bromoform	<5.0	<5.0	<5.0	<5.0	5.0
Bromomethane	<5.0	<5.0	<5.0	<5.0	5.0
2-Butanone (MEK)	<50	<50	<50	<50	50
sec-Butylbenzene	<5.0	<5.0	<5.0	<5.0	5.0
n-Butylbenzene	<5.0	<5.0	<5.0	<5.0	5.0
tert-Butylbenzene	<5.0	<5.0	<5.0	<5.0	5.0
Carbon Disulfide	<5.0	<5.0	<5.0	<5.0	5.0
Carbon Tetrachloride	<5.0	<5.0	<5.0	<5.0	5.0
Chlorobenzene	<5.0	<5.0	<5.0	<5.0	5.0
Chloroethane	<5.0	<5.0	<5.0	<5.0	5.0
Chloroform	<5.0	<5.0	<5.0	<5.0	5.0
Chloromethane	<5.0	<5.0	<5.0	<5.0	5.0
4-Chlorotoluene	<5.0	<5.0	<5.0	<5.0	5.0
2-Chlorotoluene	<5.0	<5.0	<5.0	<5.0	5.0
1,2-Dibromo-3-chloropro	pane <10	<10	<10	<10	10
Dibromochloromethane	<5.0	<5.0	<5.0	<5.0	5.0
1,2-Dibromoethane (EDB	3) <5.0	<5.0	<5.0	<5.0	5.0
Dibromomethane	<5.0	<5.0	<5.0	<5.0	5.0
1,4-Dichlorobenzene	<5.0	<5.0	<5.0	<5.0	5.0
1,3-Dichlorobenzene	<5.0	<5.0	< 5.0	<5.0	5.0
1,2-Dichlorobenzene	<5.0	<5.0	<5.0	<5.0	5.0
Dichlorodifluoromethane	(R12) <5.0	<5.0	<5.0	<5.0	5.0

Client:

Athanor Environmental Services

Project No:

30-09A

Project Name: Piazza Sample Matrix: Soil

AA Project No: A200452

Date Received: 11/21/05 Date Reported: 12/06/05

Units: ug/kg

Method: Purgeable Vola	atile Organic Cor	npounds by GC/N	/IS		
Date Sampled:	11/21/05	11/21/05	11/21/05	11/21/05	***************************************
Date Prepared:	12/05/05	12/05/05	12/05/05	12/05/05	
Date Analyzed:	12/05/05	12/05/05	12/05/05	12/05/05	
AA ID No:	5K22015-01	5K22015-02	5K22015-03	5K22015-04	
Client ID No:	G-5	G-10	H-5	H-10	
Dilution Factor:	1	4	de	1	MRL
8260B Full List (EPA 8260B) (6	continued)				
1,1-Dichloroethane	<5.0	<5.0	<5.0	<5.0	5.0
1,2-Dichloroethane (EDC)	<5.0	<5.0	<5.0	<5.0	5.0
1,1-Dichloroethylene	<5.0	<5.0	<5.0	<5.0	5.0
trans-1,2-Dichloroethylene	<5.0	<5.0	< 5.0	<5.0	5.0
cis-1,2-Dichloroethylene	<5.0	<5.0	<5.0	<5.0	5.0
1,3-Dichloropropane	<5.0	<5.0	<5.0	<5.0	5.0
1,2-Dichloropropane	<5.0	<5.0	<5.0	<5.0	5.0
2,2-Dichloropropane	<5.0	<5.0	<5.0	<5.0	5.0
1,1-Dichloropropylene	<5.0	<5.0	<5.0	<5.0	5.0
cis-1,3-Dichloropropylene	<5.0	<5.0	<5.0	<5.0	5.0
trans-1,3-Dichloropropylene	<5.0	<5.0	<5.0	<5.0	5.0
Ethylbenzene	<2.0	<2.0	<2.0	<2.0	2.0
1,1,2-Trichloro-1,2,2-trifluoroeth ane (R113)	<5.0	<5.0	<5.0	<5.0	5.0
Hexachlorobutadiene	<10	<10	<10	<10	10
2-Hexanone (MBK)	<50	<50	<50	<50	50
Isopropylbenzene	<5.0	<5.0	<5.0	<5.0	5.0
4-Isopropyltoluene	<5.0	<5.0	<5.0	<5.0	5.0
Methyl-tert-Butyl Ether (MTBE)	<5.0	<5.0	<5.0	<5.0	5.0
Methylene Chloride	<50	<50	<50	<50	50
4-Methyl-2-pentanone (MIBK)	<50	<50	<50	<50	50
Naphthalene	<10	<10	<10	<10	10
n-Propylbenzene	<5.0	<5.0	<5.0	<5.0	5.0
Styrene	<5.0	<5.0	<5.0	<5.0	5.0
1,1,2,2-Tetrachloroethane	<5.0	<5.0	<5.0	<5.0	5.0
1,1,1,2-Tetrachloroethane	<5.0	<5.0	<5.0	<5.0	5.0
Tetrachloroethylene (PCE)	<5.0	<5.0	<5.0	<5.0	5.0

Client: Project No: Athanor Environmental Services

30-09A

Project Name: Piazza Sample Matrix: Soil

AA Project No: A200452

Date Received: 11/21/05 Date Reported: 12/06/05

Units: ug/kg

Method: Purgeable \	/olatile Organic Cor	npounds by GC/N	//S		
Date Sampled:	11/21/05	11/21/05	11/21/05	11/21/05	***************************************
Date Prepared:	12/05/05	12/05/05	12/05/05	12/05/05	
Date Analyzed:	12/05/05	12/05/05	12/05/05	12/05/05	
AA ID No:	5K22015-01	5K22015-02	5K22015-03	5K22015-04	
Client ID No:	G-5	G-10	H-5	H-10	
Dilution Factor:	1	1	7	4	MRL
8260B Full List (EPA 8260B) (continued)				
Toluene	<2.0	<2.0	<2.0	<2.0	2.0
1,2,3-Trichlorobenzene	<5.0	<5.0	< 5.0	<5.0	5.0
1,2,4-Trichlorobenzene	<5.0	<5.0	< 5.0	<5.0	5.0
1,1,2-Trichloroethane	<5.0	<5.0	<5.0	<5.0	5.0
1,1,1-Trichloroethane	<5.0	<5.0	<5.0	<5.0	5.0
Trichloroethylene (TCE)	<5.0	<5.0	<5.0	<5.0	5.0
Trichlorofluoromethane (R11)	<5.0	<5.0	<5.0	<5.0	5.0
1,2,3-Trichloropropane	<5.0	<5.0	<5.0	<5.0	5.0
1,2,4-Trimethylbenzene	<5.0	<5.0	<5.0	<5.0	5.0
1,3,5-Trimethylbenzene	<5.0	<5.0	<5.0	<5.0	5.0
Vinyl chloride	<5.0	<5.0	<5.0	<5.0	5.0
o-Xylene	<2.0	<2.0	<2.0	<2.0	2.0
m,p-Xylenes	<2.0	<2.0	<2.0	<2.0	2.0
Surrogates	••••••••••••••••••••••••••••••••••••	***************************************		***************************************	%REC Limits
4-Bromofluorobenzene	102%	102%	100%	102%	80-120
Dibromofluoromethane	106%	104%	100%	106%	80-120
Toluene-d8	106%	106%	106%	108%	80-120

Client:

Athanor Environmental Services

Project No:

30-09A

Project Name: Piazza

Sample Matrix: Soil

AA Project No: A200452 Date Received: 11/21/05 Date Reported: 12/06/05

Units: ug/kg

Mathad.

Purgeable Volatile Organic Compounds by GC/MS

Method: Purgeable Volatile Organic Compounds by GC/MS						
Date Sampled:	11/21/05	11/21/05	11/21/05	11/21/05	••••••••••••	
Date Prepared:	12/05/05	12/05/05	12/05/05	12/05/05		
Date Analyzed:	12/05/05	12/05/05	12/05/05	12/05/05		
AA ID No:	5K22015-05	5K22015-06	5K22015-07	5K22015-08		
Client ID No:	I-5	l-10	J-5	J-10		
Dilution Factor:	- Approximately and a second	1	1	1	MRL	
8260B Full List (EPA 8260B)					У	
Acetone	<50	<50	<50	<50	50	
Benzene	<2.0	<2.0	<2.0	<2.0	2.0	
Bromobenzene	<5.0	<5.0	<5.0	<5.0	5.0	
Bromochloromethane	<5.0	<5.0	<5.0	<5.0	5.0	
Bromodichloromethane	<5.0	<5.0	<5.0	<5.0	5.0	
Bromoform	<5.0	<5.0	<5.0	<5.0	5.0	
Bromomethane	<5.0	<5.0	<5.0	<5.0	5.0	
2-Butanone (MEK)	<50	<50	<50	<50	50	
sec-Butylbenzene	<5.0	<5.0	<5.0	<5.0	5.0	
n-Butylbenzene	<5.0	<5.0	<5.0	<5.0	5.0	
tert-Butylbenzene	<5.0	<5.0	<5.0	<5.0	5.0	
Carbon Disulfide	<5.0	<5.0	<5.0	<5.0	5.0	
Carbon Tetrachloride	<5.0	<5.0	<5.0	<5.0	5.0	
Chlorobenzene	<5.0	<5.0	<5.0	<5.0	5.0	
Chloroethane	<5.0	<5.0	<5.0	<5.0	5.0	
Chloroform	<5.0	<5.0	<5.0	<5.0	5.0	
Chloromethane	<5.0	<5.0	<5.0	<5.0	5.0	
4-Chlorotoluene	<5.0	<5.0	<5.0	<5.0	5.0	
2-Chlorotoluene	<5.0	<5.0	<5.0	<5.0	5.0	
1,2-Dibromo-3-chloropropane	<10	<10	<10	<10	10	
Dibromochloromethane	<5.0	<5.0	<5.0	<5.0	5.0	
1,2-Dibromoethane (EDB)	<5.0	<5.0	<5.0	<5.0	5.0	
Dibromomethane	<5.0	<5.0	<5.0	<5.0	5.0	
1,4-Dichlorobenzene	<5.0	<5.0	<5.0	<5.0	5.0	
1,3-Dichlorobenzene	<5.0	<5.0	<5.0	<5.0	5.0	
1,2-Dichlorobenzene	<5.0	<5.0	<5.0	<5.0	5.0	
Dichlorodifluoromethane (R12)	<5.0	<5.0	<5.0	<5.0	5.0	

Client: Project No: **Athanor Environmental Services**

30-09A

Project Name: Piazza

Sample Matrix: Soil

AA Project No: A200452 Date Received: 11/21/05 Date Reported: 12/06/05

Units: ug/kg

Method: Purgeable Volatile Organic Compounds by GC/MS

Data Carralad			00000///0000000000000000000000000000000	**************************************	000000000000000000000000000000000000000
Date Sampled:	11/21/05	11/21/05	11/21/05	11/21/05	
Date Prepared:	12/05/05	12/05/05	12/05/05	12/05/05	
Date Analyzed:	12/05/05	12/05/05	12/05/05	12/05/05	
AA ID No:	5K22015-05	5K22015-06	5K22015-07	5K22015-08	
Client ID No:	I-5	I-10	J-5	J-10	MRL
Dilution Factor:	1		1	1	IVICL
8260B Full List (EPA 8260B) (d	continued)				
1,1-Dichloroethane	<5.0	<5.0	<5.0	<5.0	5.0
1,2-Dichloroethane (EDC)	<5.0	<5.0	<5.0	<5.0	5.0
1,1-Dichloroethylene	<5.0	<5.0	<5.0	<5.0	5.0
trans-1,2-Dichloroethylene	<5.0	<5.0	<5.0	<5.0	5.0
cis-1,2-Dichloroethylene	<5.0	<5.0	<5.0	<5.0	5.0
1,3-Dichloropropane	<5.0	<5.0	<5.0	<5.0	5.0
1,2-Dichloropropane	<5.0	<5.0	<5.0	<5.0	5.0
2,2-Dichloropropane	<5.0	<5.0	<5.0	<5.0	5.0
1,1-Dichloropropylene	<5.0	<5.0	<5.0	<5.0	5.0
cis-1,3-Dichloropropylene	<5.0	<5.0	<5.0	<5.0	5.0
trans-1,3-Dichloropropylene	<5.0	<5.0	<5.0	<5.0	5.0
Ethylbenzene	<2.0	<2.0	<2.0	<2.0	2.0
1,1,2-Trichloro-1,2,2-trifluoroeth ane (R113)	<5.0	<5.0	<5.0	<5.0	5.0
Hexachlorobutadiene	<10	<10	<10	<10	10
2-Hexanone (MBK)	<50	<50	<50	<50	50
Isopropyibenzene	<5.0	<5.0	<5.0	<5.0	5.0
4-Isopropyltoluene	<5.0	<5.0	<5.0	<5.0	5.0
Methyl-tert-Butyl Ether (MTBE)	<5.0	<5.0	<5.0	<5.0	5.0
Methylene Chloride	<50	<50	<50	<50	50
4-Methyl-2-pentanone (MIBK)	<50	<50	<50	<50	50
Naphthalene	<10	<10	<10	<10	10
n-Propylbenzene	<5.0	<5.0	<5.0	<5.0	5.0
Styrene	<5.0	<5.0	<5.0	<5.0	5.0
1,1,2,2-Tetrachloroethane	<5.0	<5.0	<5.0	<5.0	5.0
1,1,1,2-Tetrachloroethane	<5.0	<5.0	<5.0	<5.0	5.0
Tetrachloroethylene (PCE)	<5.0	<5.0	<5.0	<5.0	5.0

Client:

Athanor Environmental Services

Project No:

30-09A

Date Received: 11/21/05 Date Reported: 12/06/05

AA Project No: A200452

Project Name: Piazza Sample Matrix: Soil

Units: ug/kg

Method: Pu	rgeable Volat	ile Organic Cor	npounds by GC/	MS		
Date Sampled:	000000000000000000000000000000000000000	11/21/05	11/21/05	11/21/05	11/21/05	***************************************
Date Prepared:		12/05/05	12/05/05	12/05/05	12/05/05	
Date Analyzed:		12/05/05	12/05/05	12/05/05	12/05/05	
AA ID No:		5K22015-05	5K22015-06	5K22015-07	5K22015-08	
Client ID No:		I-5	I-10	J-5	J-10	
Dilution Factor:		1	of the state of th	quon	1	MRL
8260B Full List (EP	<u>A 8260B)</u> (c	ontinued)				
Toluene		<2.0	<2.0	<2.0	<2.0	2.0
1,2,3-Trichlorobenze	ne	<5.0	<5.0	<5.0	<5.0	5.0
1,2,4-Trichlorobenze	ine	<5.0	<5.0	< 5.0	<5.0	5.0
1,1,2-Trichloroethan	е	<5.0	<5.0	<5.0	<5.0	5.0
1,1,1-Trichloroethan	9	<5.0	<5.0	<5.0	<5.0	5.0
Trichloroethylene (Trichloroethylene)	CE)	<5.0	<5.0	<5.0	<5.0	5.0
Trichlorofluorometha	ne (R11)	<5.0	<5.0	<5.0	<5.0	5.0
1,2,3-Trichloropropa	ne	<5.0	<5.0	<5.0	<5.0	5.0
1,2,4-Trimethylbenzo	ene	<5.0	<5.0	<5.0	<5.0	5.0
1,3,5-Trimethylbenzo	ene	<5.0	<5.0	<5.0	<5.0	5.0
Vinyl chloride		<5.0	<5.0	<5.0	<5.0	5.0
o-Xylene		<2.0	<2.0	<2.0	<2.0	2.0
m,p-Xylenes		<2.0	<2.0	<2.0	<2.0	2.0
Surrogates	***************************************	***************************************	***************************************			%REC Limits
4-Bromofluorobenze	ne	102%	100%	102%	102%	80-120
Dibromofluorometha	ne	106%	106%	104%	110%	80-120
Toluene-d8		106%	106%	106%	106%	80-120

Client:

Athanor Environmental Services

Project No: Project Name: Piazza

30-09A

AA Project No: A200452

Date Received: 11/21/05 Date Reported: 12/06/05

80		***************************************	***************************************	*************************************	**********		***************************************	********	************	*****************	
ě					Cnika	Source		0/DEA		RPD	1
					apınc	Source		%KEU		8.42.878	
1	Amaliaka	Danielle	MRL	Units	Level	Result	%REC	Limits	RPD	l imit	Notes
1	Milalytt	resun			xxx xx x x x x					Limit	

Purgeable Volatile Organic Compounds by GC/MS - Quality Control

Batch B5L0605 - EPA 5030B

Blank (B5L0605-BLK1)			Prepared & Analyzed: 12/05/05	
Acetone	<50	50	ug/kg	
Benzene	<2.0	2.0	ug/kg	
Bromobenzene	<5.0	5.0	ug/kg	
Bromochloromethane	<5.0	5.0	ug/kg	
Bromodichloromethane	<5.0	5.0	ug/kg	
Bromoform	<5.0	5.0	ug/kg	
Bromomethane	<5.0	5.0	ug/kg	
2-Butanone (MEK)	<50	50	ug/kg	
sec-Butylbenzene	<5.0	5.0	ug/kg	
n-Butylbenzene	<5.0	5.0	ug/kg	
tert-Butylbenzene	<5.0	5.0	ug/kg	
Carbon Disulfide	<5.0	5.0	ug/kg	
Carbon Tetrachloride	<5.0	5.0	ug/kg	
Chlorobenzene	<5.0	5.0	ug/kg	
Chloroethane	<5.0	5.0	ug/kg	
Chloroform	<5.0	5.0	ug/kg	
Chloromethane	<5.0	5.0	ug/kg	
4-Chlorotoluene	<5.0	5.0	ug/kg	
2-Chlorotoluene	<5.0	5.0	ug/kg	
1,2-Dibromo-3-chloropropane	<10	10	ug/kg	
Dibromochloromethane	<5.0	5.0	ug/kg	
1,2-Dibromoethane (EDB)	<5.0	5.0	ug/kg	
Dibromomethane	<5.0	5.0	ug/kg	
1,4-Dichlorobenzene	<5.0	5.0	ug/kg	
1,3-Dichlorobenzene	<5.0	5.0	ug/kg	
1,2-Dichlorobenzene	<5.0	5.0	ug/kg	
Dichlorodifluoromethane (R12)	<5.0	5.0	ug/kg	
1,1-Dichloroethane	<5.0	5.0	ug/kg	
1,2-Dichloroethane (EDC)	<5.0	5.0	ug/kg	

Client:

Athanor Environmental Services

Project No:

30-09A Project Name: Piazza

AA Project No: A200452

Date Received: 11/21/05 Date Reported: 12/06/05

Spike Source %REC RPD Level Result %REC Limits Units **RPD Limit Notes** Analyte Result MRL

Purgeable Volatile Organic Compounds by GC/MS - Quality Control

Batch B5L0605 - EPA 5030B

Blank (B5L0605-BLK1) Continued			Prepared & Analyzed: 12/05/05
1,1-Dichloroethylene	<5.0	5.0	ug/kg
trans-1,2-Dichloroethylene	<5.0	5.0	ug/kg
cis-1,2-Dichloroethylene	<5.0	5.0	ug/kg
1,3-Dichloropropane	<5.0	5.0	ug/kg
1,2-Dichloropropane	<5.0	5.0	ug/kg
2,2-Dichloropropane	<5.0	5.0	ug/kg
1,1-Dichloropropylene	<5.0	5.0	ug/kg
cis-1,3-Dichloropropylene	<5.0	5.0	ug/kg
trans-1,3-Dichloropropylene	<5.0	5.0	ug/kg
Ethylbenzene	<2.0	2.0	ug/kg
1,1,2-Trichloro-1,2,2-trifluoroethane (R113)	<5.0	5.0	ug/kg
Hexachlorobutadiene	<10	10	ug/kg
2-Hexanone (MBK)	<50	50	ug/kg
Isopropylbenzene	<5.0	5.0	ug/kg
4-Isopropyltoluene	<5.0	5.0	ug/kg
Methyl-tert-Butyl Ether (MTBE)	<5.0	5.0	ug/kg
Methylene Chloride	<50	50	ug/kg
4-Methyl-2-pentanone (MIBK)	<50	50	ug/kg
Naphthalene	<10	10	ug/kg
n-Propylbenzene	<5.0	5.0	ug/kg
Styrene	<5.0	5.0	ug/kg
1,1,2,2-Tetrachloroethane	<5.0	5.0	ug/kg
1,1,1,2-Tetrachloroethane	<5.0	5.0	ug/kg
Tetrachloroethylene (PCE)	<5.0	5.0	ug/kg
Toluene	<2.0	2.0	ug/kg
1,2,3-Trichlorobenzene	<5.0	5.0	ug/kg
1,2,4-Trichlorobenzene	<5.0	5.0	ug/kg
1,1,2-Trichloroethane	<5.0	5.0	ug/kg

Client:

Athanor Environmental Services

Project No:

30-09A Project Name: Piazza

AA Project No: A200452

Date Received: 11/21/05 Date Reported: 12/06/05

Analyte	Result	MRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
Purgeable Volatile Organic Comp	ounds by	GC/MS -	Quality Co	ontrol					
Batch B5L0605 - EPA 5030B									
Blank (B5L0605-BLK1) Continue	d			Prepare	ed & Analyzed: 1	2/05/05			
1,1,1-Trichloroethane	<5.0	5.0	ug/kg						
Trichloroethylene (TCE)	<5.0	5.0	ug/kg						
Trichlorofluoromethane (R11)	<5.0	5.0	ug/kg						
1,2,3-Trichloropropane	<5.0	5.0	ug/kg						
1,2,4-Trimethylbenzene	<5.0	5.0	ug/kg						
1,3,5-Trimethylbenzene	<5.0	5.0	ug/kg						
Vinyl chloride	<5.0	5.0	ug/kg						
o-Xylene	<2.0	2.0	ug/kg						
m,p-Xylenes	<2.0	2.0	ug/kg						
Surrogate: 4-Bromofluorobenzene	101	***********************	ug/kg	100	101	80-120		************************	
Surrogate: Dibromofluoromethane	103		ug/kg	100	103	80-120			
Surrogate: Toluene-d8	107		ug/kg	100	107	80-120			
LCS (B5L0605-BS1)			.	Prepare	d & Analyzed: 1	2/05/05			
Benzene	37.4	2.0	ug/kg	40.0	93.5	75-125			
Bromodichloromethane	42.6	5.0	ug/kg	40.0	106	75-125			
Bromoform	40.8	5.0	ug/kg	40.0	102	75-125			
Carbon Tetrachloride	47.4	5.0	ug/kg	40.0	118	75-125			
Chlorobenzene	40.6	5.0	ug/kg	40.0	102	75-125			
Chloroethane	53.0	5.0	ug/kg	40.0	132	75-125			
Chloroform	44.6	5.0	ug/kg	40.0	112	75-125			
Chloromethane	48.8	5.0	ug/kg	40.0	122	75-125			
Dibromochloromethane	41.4	5.0	ug/kg	40.0	104	75-125			
1,4-Dichlorobenzene	39.4	5.0	ug/kg	40.0	98.5	75-125			
1,1-Dichloroethane	40.2	5.0	ug/kg	40.0	100	75-125			
1,2-Dichloroethane (EDC)	43.4	5.0	ug/kg	40.0	108	75-125			
1,1-Dichloroethylene	37.2	5.0	ug/kg	40.0	93.0	75-125			
trans-1,2-Dichloroethylene	37.0	5.0	ug/kg	40.0	92.5	75-125			
cis-1,2-Dichloroethylene	37.8	5.0	ug/kg	40.0	94.5	75-125			
1,2-Dichloropropane	36.8	5.0	ug/kg	40.0	92.0	75-125			
cis-1,3-Dichloropropylene	33.8	5.0	ug/kg	40.0	84.5	75-125			

Client:

Athanor Environmental Services

Project No: Project Name: Piazza

30-09A

AA Project No: A200452

Date Received: 11/21/05 Date Reported: 12/06/05

Analyte	Result	WRL	Units	Spike Level	Source Result %REC	%REC Limits	RPD	RPD Limit	Notes
Purgeable Volatile Organic Compo	ounds by	GC/MS -	Quality Co	ontrol					
Batch B5L0605 - EPA 5030B									
LCS (B5L0605-BS1) Continued			2/05/05						
Ethylbenzene	41.0	2.0	ug/kg	40.0	102	75-125	388 89		
Methyl-tert-Butyl Ether (MTBE)	33.4	5.0	ug/kg	40.0	83.5	75-125			
Methylene Chloride	32.8	50	ug/kg	40.0	82.0	75-125			
n-Propylbenzene	41.0	5.0	ug/kg	40.0	102	75-125			
1,1,2,2-Tetrachloroethane	34.6	5.0	ug/kg	40.0	86.5	75-125			
Tetrachloroethylene (PCE)	43.0	5.0	ug/kg	40.0	108	75-125			
Toluene	39.8	2.0	ug/kg	40.0	99.5	75-125			
1,1,2-Trichloroethane	37.4	5.0	ug/kg	40.0	93.5	75-125			
1,1,1-Trichloroethane	47.4	5.0	ug/kg	40.0	118	75-125			
Trichloroethylene (TCE)	38.6	5.0	ug/kg	40.0	96.5	75-125			
Vinyl chloride	49.4	5.0	ug/kg	40.0	124	75-125			
o-Xylene	41.0	2.0	ug/kg	40.0	102	75-125			
Surrogate: 4-Bromofluorobenzene	98.6	***********************	ug/kg	100	98.6	80-120		odiinaaaaaaaadiidiiliikkee	
Surrogate: Dibromofluoromethane	107		ug/kg	100	107	80-120			
Surrogate: Toluene-d8	104		ug/kg	100	104	80-120			
Matrix Spike (B5L0605-MS1)	S	ource: 5		Prepare	d & Analyzed: 1	2/05/05			
Benzene	36.2	2.0	ug/kg	40.0	<2.0 90.5	70-130	<u> </u>		
Bromoform	42.6	5.0	ug/kg	40.0	<5.0 106	70-130			
Chlorobenzene	40.8	5.0	ug/kg	40.0	<5.0 102	70-130			
Chloroform	44.0	5.0	ug/kg	40.0	<5.0 110	70-130			
1,1-Dichloroethane	39.8	5.0	ug/kg	40.0	<5.0 99.5	70-130			
1,1-Dichloroethylene	36.6	5.0	ug/kg	40.0	<5.0 91.5	70-130			
cis-1,2-Dichloroethylene	36.2	5.0	ug/kg	40.0	<5.0 90.5	70-130			
1,2-Dichloropropane	35.2	5.0	ug/kg	40.0	<5.0 88.0	70-130			
Ethylbenzene	41.4	2.0	ug/kg	40.0	<2.0 104	70-130			
Methyl-tert-Butyl Ether (MTBE)	33.4	5.0	ug/kg	40.0	<5.0 83.5	70-130			
n-Propylbenzene	40.6	5.0	ug/kg	40.0	<5.0 102	70-130			
Tetrachloroethylene (PCE)	43.0	5.0	ug/kg	40.0	<5.0 108	70-130			
Toluene	39.6	2.0	ug/kg	40.0	<2.0 99.0	70-130			
1,1,1-Trichloroethane	47.2	5.0	ug/kg	40.0	<5.0 118	70-130			
Trichloroethylene (TCE)	37.6	5.0	ug/kg	40.0	<5.0 94.0	70-130			

Client:

Athanor Environmental Services

Project No: Project Name: Piazza

30-09A

AA Project No: A200452

Date Received: 11/21/05 Date Reported: 12/06/05

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Purgeable Volatile Organic Compo	unds by	GC/MS	- Quality Co	ntrol							
Batch B5L0605 - EPA 5030B	_		-								
Matrix Spike (B5L0605-MS1) Con	tinued S	ource: 5	K22015-01	Prepare	ed & Anal	vzed: 1	2/05/05				
1,3,5-Trimethylbenzene	41.6	5.0	ug/kg	40.0	<5.0	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	70-130	***************************************	///////////	, and the second second	
Vinyl chloride	47.2	5.0	ug/kg	40.0	<5.0	118	70-130				
Surrogate: 4-Bromofluorobenzene	98.4	***************************************	ug/kg	100		98.4	80-120	Mariana and American (1990)	000000000000000000000000000000000000000	ingenegen en en indició i significació en	
Surrogate: Dibromofluoromethane	106		ug/kg	100		106	80-120				
Surrogate: Toluene-d8	105		ug/kg	100		105	80-120				
Matrix Spike Dup (B5L0605-MSD	1) S	ource: 5	K22015-01	Prepare	ed & Anal	yzed: 1	2/05/05				
Benzene	36.2	2.0	ug/kg	40.0	<2.0	90.5	70-130	0.00	40	or a construction of the c	
Bromoform	40.2	5.0	ug/kg	40.0	<5.0	100	70-130	5.80	40		
Chlorobenzene	40.0	5.0	ug/kg	40.0	<5.0	100	70-130	1.98	40		
Chloroform	43.8	5.0	ug/kg	40.0	<5.0	110	70-130	0.456	40		
1,1-Dichloroethane	40.2	5.0	ug/kg	40.0	<5.0	100	70-130	1.00	40		
1,1-Dichloroethylene	35.8	5.0	ug/kg	40.0	<5.0	89.5	70-130	2.21	40		
cis-1,2-Dichloroethylene	36.6	5.0	ug/kg	40.0	<5.0	91.5	70-130	1.10	40		
1,2-Dichloropropane	35.6	5.0	ug/kg	40.0	<5.0	89.0	70-130	1.13	40		
Ethylbenzene	40.2	2.0	ug/kg	40.0	<2.0	100	70-130	2.94	40		
Methyl-tert-Butyl Ether (MTBE)	33.4	5.0	ug/kg	40.0	<5.0	83.5	70-130	0.00	40		
n-Propylbenzene	40.0	5.0	ug/kg	40.0	<5.0	100	70-130	1.49	40		
Tetrachloroethylene (PCE)	43.0	5.0	ug/kg	40.0	<5.0	108	70-130	0.00	40		
Toluene	38.8	2.0	ug/kg	40.0	<2.0	97.0	70-130	2.04	40		
1,1,1-Trichloroethane	47.2	5.0	ug/kg	40.0	<5.0	118	70-130	0.00	40		
Trichloroethylene (TCE)	38.2	5.0	ug/kg	40.0	<5.0	95.5	70-130	1.58	40		
1,3,5-Trimethylbenzene	41.0	5.0	ug/kg	40.0	<5.0	102	70-130	1.45	40		
Vinyl chloride	48.0	5.0	ug/kg	40.0	<5.0	120	70-130	1.68	40		
Surrogate: 4-Bromofluorobenzene	99.6	**************************************	ug/kg	100		99.6	80-120			***************************************	
Surrogate: Dibromofluoromethane	107		ug/kg	100		107	80-120				
Surrogate: Toluene-d8	104		ug/kg	100		104	80-120				

Client:

Athanor Environmental Services

Project No: Project Name: Piazza

30-09A

AA Project No: A200452

Date Received: 11/21/05 Date Reported: 12/06/05

Special Notes

AVERICAN ANALYTICS

AMERICAN ANALYTICS CHAIN-OF-CUSTODY RECORD

9765 ETON AVE., CHATSWORTH, CA 91311

Tel: 818-998-5547 FAX: 818-998-7258

Nº 337721 DATE: 1-21-66

AA Client	1AVUR B	-NJ 1R	ยพทธ	1/1 A L		Phony	6)	اره	440	-17	36		Sampi Name	ler's (Print)		LW (DEMA			
L TOHNSON							P.U. NO. 50-09A							Sempler's A Fish					
Project Name PIA-ZZA							Client's Project No.						Project Manager's Carry A Africa.						
Job Name	1		A				**********	****	18 11 18	OIKI	D (16					Citerri's Comment Special Test			
and Address <u>90</u> <i>St</i>	or KAN DUTH	rd Gate	AVEN CA "		3		/				//					Requirements / Commer (Le., - Turneround Time Detection Limits			
Cäent's I.D.	A.A. I.D.#	Date	Time	Sample Type	Number of Containers					A STATE OF THE STA						Data Padiage)			
6-5	2K73016-01	11/2/105		5¢1L	17		4	T	ĹĹ	Ī	Í			ħι	~_ ·	SCREE1			
\$-10	-46-		1129979			112	4	_		1	<u> </u>				Marrows				
<u> 14-5</u>	~0> -04		11.22/1			 ┷	4-	<u> </u>	 -		-	ļ	-						
H-10 I-65	- 35		1153,0 1245,00	_	+-+-	┢╼┾╛	4	-	-		+	 	┢┈╂	·					
Ż-U	~3C		32700			H	9—	+		-	+	┢──		•••••					
5-5	~0"1		127/An		1 7		7	1		1	1	1			***************************************				
JAO	~98	J.J	12439.4				4	1			1			••••••	***************************************				
					.	\blacksquare		 	\blacksquare	-	┪┈	┣──	\vdash	••••••					
							1	1		1	+	†							

					<u> </u>	-	- 	-	-	-	-	ļ			***************************************	4.3	Carl 1 1 6 40		
****	······································				-	+-+	+-	╂			+	 	$\ \cdot\ $		***************************************				
	••••			***************************************		 	1	1		1	1	T		·········					
LAB COMMENT	3					Rading C	yisho Lad	d by	1. Jr.			************	-Sommon	1/00	Time 1 <u>6</u> 20	Registred by:			
								man F		CONTROL OF THE PARTY OF THE PAR			1/1/2	" /<	Time / 7/27		2		
				2.4		Keling	uishe	d by:	· · · · · · · · · · · · · · · · · · ·	÷		************	Da	*********	Time	Received by:			
Approved as Print Name Slove 1/21/05 1730 Work Order by: VIOS 1730 AA Project No. A 20045/ SK 22 O15							Relinquished by:						Date Time Received by:			Received by:			